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Abstract. We present a new global reconstruction of seasonal climates at the Last
Glacial Maximum (LGM, 21,000 yr BP) made using 3-D variational data assimilation
with  pollen-based  site  reconstructions  of  six  climate  variables  and  the  ensemble
average of the PMIP3/CMIP5 simulations as a prior. We assume that the correlation
matrix of the errors of the prior both spatially and temporally is Gaussian, in order to
produce a climate reconstruction that is smoothed both from month to month and
from grid cell  to  grid  cell.  The  pollen-based reconstructions  include  mean annual
temperature  (MAT),  mean  temperature  of  the  coldest  month  (MTCO),  mean
temperature of the warmest month (MTWA), growing season warmth as measured by
growing degree  days  above a  baseline  of  5°C (GDD5),  mean annual  precipitation
(MAP) and a moisture index (MI), which is the ratio of MAP to mean annual potential
evapotranspiration.  Different  variables  are  reconstructed  at  different  sites,  but  our
approach both preserves seasonal relationships  and allows a more complete  set  of
seasonal climate variables to be derived at each location.  We further account for the
ecophysiological  effects  of  low  atmospheric  carbon  dioxide  concentration  on
vegetation in making reconstructions of MAP and MI. This adjustment results in the
reconstruction of wetter climates than might otherwise be inferred by the vegetation
composition. Finally, by comparing the error contribution to the final reconstruction,
we provide confidence intervals  on these reconstructions  and delimit  geographical
regions  for  which  the  palaeodata  provide  no  information  to  constrain  the  climate
reconstructions.  The  new  reconstructions  will  provide  a  robust  benchmark  for
evaluation of the PMIP4/CMIP6 entry-card LGM simulations.
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1 Introduction

Models that perform equally well for present-day climate nevertheless produce very
different  responses  to  anthropogenic  forcing  scenarios  through  the  21st century.
Although internal  variability  contributes  to  these differences,  the largest  source of
uncertainty in model projections in the first three to four decades of the 21st century
stems  from differences  in  the  response  of  individual  models  to  the  same forcing
(Kirtman et al., 2013). Thus, the evaluation of models based on modern observations
is not a good guide to their future performance, largely because the observations used
to assess model performance for present-day climate encompass too limited a range of
climate variability to provide a robust test of the ability to simulate climate changes.
Although  past climate states do not provide analogues for the future,  past  climate
changes provide a unique opportunity for out-of-sample evaluation of climate model
performance (Harrison et al., 2015).

At the Last Glacial Maximum (LGM, 21 000 years ago), insolation was quite similar
to the present, but global ice volume was at a maximum, eustatic sea level was close
to a minimum, long-lived greenhouse gas concentrations were lower and atmospheric
aerosol  loadings  higher  than  today,  and  land  surface  characteristics  (including
vegetation distribution) were also substantially different from today. These changes
gave rise to a climate radically different from that of today; indeed the magnitude of
the  change  in  radiative  forcing  between  LGM  and  pre-industrial  climate  is
comparable to high-emissions projections of climate change between now and the end
of the 21st century (Braconnot et al., 2012).  The LGM has been a focus for model
evaluation in the Paleoclimate Modelling Intercomparison Project (PMIP) since its
inception  (Joussaume and Taylor,  1995; Braconnot  et  al.,  2007;  Braconnot  et  al.,
2012). The LGM is one of the two “entry card” palaeoclimate simulations included in
the current phase of the Coupled Model Intercomparison Project (CMIP6) (Kageyama
et al., 2018). The evaluation of previous generations of palaeoclimate simulations has
shown that the large-scale thermodynamic responses seen in 21st century and LGM
climates, including enhanced land–sea temperature contrast, latitudinal amplification,
and scaling of precipitation with temperature, are likely to be realistic (Izumi et al.,
2013; Li et al., 2013; Lunt et al, 2013; Hill et al., 2014; Izumi et al., 2014; Harrison et
al., 2015). However, evaluation against palaeodata shows that even when the sign of
large-scale climate changes is correctly predicted, the patterns of change at a regional
scale are often inaccurate and the magnitudes of change often underestimated (Brewer
et al., 2007; Mauri et al., 2014; Perez Sanz et al., 2014; Bartlein et al., 2017). The
current focus on understanding what causes mismatches between reconstructed and
simulated climates is a primary motivation for developing benchmark data sets that
represent  regional  climate  changes  comprehensively  enough  to  allow  a  critical
evaluation of model deficiencies.

Many sources of information can be used to reconstruct past climates. Pollen-based
reconstructions are the most widespread, and pollen-based data were the basis for the
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current standard LGM benchmark data set by Bartlein et al. (2011). In common with
other  data  sources,  the  pollen-based reconstructions  were  generated  for  individual
sites.  Geological  preservation  issues  mean  that  the  number  of  sites  available
inevitably decreases through time (Bradley, 2014). Since pollen is only preserved for
a long time in anoxic sediments, the geographic distribution of potential sites is biased
towards climates that are relatively wet today. Furthermore, the actual sampling of
potential  sites  is  highly  non-uniform,  so  there  are  large  geographic  gaps  in  data
coverage (Harrison et al., 2016). The lack of continuous climate fields is not ideal for
model evaluation, and so attempts have been made to generalize the site-based data
either through gridding, interpolation, or some form of multiple regression (see e.g.
Bartlein et al., 2011; Annan and Hargreaves, 2013). However, there has so far been no
attempt to produce a physically consistent, multi-variable reconstruction with explicit
uncertainties attached to it.

A  further  characteristic  of  the  LGM  that  creates  problems  for  quantitative
reconstructions based on pollen data is the much lower atmospheric carbon dioxide
concentration,  [CO2],  compared to  the  pre-industrial  Holocene.  [CO2]  has  a  direct
effect on plant physiological processes. Low [CO2] as experienced by plants at the
LGM is expected to have led to reduced water-use efficiency – the ratio of carbon
assimilation  to  the  water  lost  through  transpiration  (Bramley  et  al.,  2013).  Most
reconstructions  of  moisture  variables  from  pollen  data,  including  most  of  the
reconstructions used by Bartlein et al. (2011), do not take [CO2] effects into account.
Yet several modelling studies have shown that the impact of low  [CO2] around the
LGM on plant  growth and distribution was large (e.g.  Jolly  and Haxeltine,  1997;
Cowling and Sykes, 1999; Harrison and Prentice, 2003; Bragg et al., 2013; Martin
Calvo et al., 2014; Martin Calvo and Prentice, 2015). A few reconstructions of LGM
climate  based  on  the  inversion  of  process-based  biogeography  models  have  also
shown large effects of low [CO2] on reconstructed LGM palaeoclimates (e.g. Guiot et
al., 2000; Wu et al., 2007). The reconstructions of moisture variables in the Bartlein et
al. (2011) data set are thus probably not reliable, and likely to be biased low. 

Prentice et al. (2017) demonstrated an approach to correct reconstructions of moisture
variables for the effect of [CO2], but this correction has not been applied globally. A
key side effect  of  applying this  [CO2]  correction  is  to  reconcile  semi-quantitative
hydrological  evidence  for  wet  conditions  at  the  LGM  with  the  apparent  dryness
suggested  by  the  vegetation  assemblages  (Prentice  et  al.,  2017).  Similar
considerations  apply  to  the  interpretation  of  future  climate  changes  in  terms  of
vegetational  effects.  Projections  of  future  aridity  (based  on  declining  indices  of
moisture  availability)  linked  to  warming  are  unrealistic,  in  a  global  perspective,
because of the counteracting effect of increased water use efficiency due to rising
[CO2] – which is generally taken into account by process-based ecosystem models,
but not by statistical models relying on projected changes in vapour pressure deficit or
MI (Keenan et al., 2011; Roderick et al., 2015; Greve et al., 2017).
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In this paper, we use variational data assimilation based on both pollen-based climate
reconstructions  and  climate  model  outputs  to  arrive  at  a  best-estimate  analytical
reconstruction  of  LGM climate,  explicitly  taking account  of  the  impact  of  [CO2].
Variational techniques provide a way of combining observations and model outputs to
produce climate reconstructions that are not exclusively constrained to one source of
information  or  the  other  (Nichols,  2010).  We  use  the  error  contributions  to  the
analytical reconstruction to provide confidence intervals for these reconstructions and
also to delimit geographical regions for which the palaeodata provide no constraint on
the reconstructions. The resulting data set is expected provide a well-founded multi-
variable LGM climate dataset for palaeoclimate model benchmarking in CMIP6.

2 Methods

2.1 Pollen-based climate reconstructions

Bartlein et al. (2011) provided a global synthesis of pollen-based quantitative climate
reconstructions  for  the  LGM.  The  Bartlein  et  al.  (2011)  data  set  includes
reconstructions of climate anomalies (differences between LGM and recent climates)
for  six  variables  (and  their  uncertainties),  specifically  mean  annual  temperature
(MAT), mean temperature of the coldest month (MTCO), mean temperature of the
warmest  month  (MTWA),  growing  degree  days  above  a  baseline  of  above  5°C
(GDD5), mean annual precipitation (MAP), and an index of plant-available moisture
(the ratio of actual to equilibrium evapotranspiration, or α).  There are a small number
of LGM sites (94) in the Bartlein et al. (2011) data set where model inversion was
used  to  make  the  reconstructions  of  α  and  MAP;  these  were  excluded  from our
analysis. There are no data from Australia in the Bartlein et al. (2011) data set, and we
therefore use quantitative reconstructions of MAT and another moisture index (MI),
the ratio of MAP to potential evapotranspiration, from Prentice et al. (2017). Prentice
et al. (2017) provide values of MI both before and after correction for [CO2]; we use
the  uncorrected  values  in  order  to  apply  the  correction  for  [CO2]  within  our
assimilation framework. For consistency between the two data sets, we re-expressed
reconstructions  of  α  in  terms of  MI via  the Fu-Zhang formulation  of the Budyko
relationship  between  actual  evapotranspiration,  potential  evapotranspiration  and
precipitation (Zhang et al., 2004; Gallego-Sala et al., 2016).

The spatial coverage of the final data set is uneven (Figure 1). There are many more
data  points  in  Europe and North America than elsewhere.  South America  has  the
fewest (14 sites). The number of variables available at each site varies: although most
sites  (279)  have  reconstructions  of  at  least  three  variables,  some  sites  have
reconstructions  of  only  one variable  (60).  Nevertheless,  in  regions  where  there  is
adequate  coverage,  the reconstructed  anomaly patterns  are  coherent,  plausible  and
consistent among variables.
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Figure 1:  The distribution of the site-based reconstructions of climatic variables at
the  Last  Glacial  Maximum. The plots  show sites  providing reconstructions  of  (a)
moisture  index  (MI),  (b)  mean  annual  precipitation  (MAP),  (c)  mean  annual
temperature (MAT), (d) mean temperature of the coldest month (MTCO), (e) mean
temperature of the warmest month (MTWA), and (f) growing degree days above a
baseline of 5°C (GDD5). The original reconstructions are from Bartlein et al. (2011)
and Prentice et al. (2017).

For this application, we derived absolute LGM climate reconstructions by adding the
reconstructed climate anomalies at each site to the modern climate values from the
Climate Research Unit (CRU) historical climatology data set (CRU CL v2.0 dataset,
New et al., 2002), which provides climatological averages of monthly temperature,
precipitation  and cloud  cover  fraction  for  the  period  1961-1990 CE.  Most  of  the
climate variables (MTCO, MTWA, MAT, MAP) can be calculated directly from the
CRU CL v2.0 dataset. GDD5 was calculated from pseudo-daily data derived by linear
interpolation of the monthly temperatures. MI was calculated from the CRU climate
variables using the radiation calculations in the SPLASH model (Davis et al., 2017).
For  numerical  efficiency,  we  non-dimensionalised  all  of  the  absolute  climate
reconstructions (and their standard errors) before applying the variational techniques
(for details, see Cleator et al., 2019a). 

2.2 Climate model simulations
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Eight  LGM  climate  simulations  (Table  1)  from  the  third  phase  of  the
Palaeoclimate  Modelling  Intercomparison Project  (PMIP3: Braconnot  et  al.,  2012)
were  used  to  create  a  prior.  The PMIP LGM simulations  were  forced  by known
changes in incoming solar radiation, changes in land-sea geography and the extent
and location of ice sheets, and a reduction in [CO2] to 185 ppm (see Braconnot et al.,
2012 for details of the modelling protocol). We used the last 100 years of each LGM
simulation. We interpolated monthly precipitation, monthly temperature and monthly
fraction  of  sunshine  hours  from each  LGM simulation  and  its  pre-industrial  (PI)
control to a common 2 x 2°  grid. Simulated climate anomalies (LGM minus PI) for
each grid cell were then added to modern climate values calculated from the CRU CL
2.0 data set (New et al., 2002), as described for the pollen-based reconstructions, to
derive  absolute  climate  values.  We calculated  the multi-model  mean and variance
(Figure 2) across the modelsfor each of the climate variables to produce the gridded
map used as the prior. 

Model name Type Resolution Year
length

Reference
Atmosphere Ocean Sea Ice

CCSM4 OA 192, 288 320, 384 320, 384 365 Gent et al. (2011) 
CNRM-CM5 OA 128, 256 292, 362 292, 362 365-

366 
Voldoire  et  al.
(2012) 

MPI-ESM-P OA 96, 192 220, 256 220, 256 365-
366 

Jungclaus  et  al.
(2006)

MRI-
CGCM3 

OA 160, 320 360, 368 360, 368 365 Yukimoto  et  al.
(2011) 

FGOALS-g2 OA 64, 128 64, 128 64, 128 365 Li et al. (2013)
COSMOS-ASO OAC 96, 48 120, 101 120, 101 360 Budich  et  al.

(2010) 
IPSL-CM5A-LR OAC 96, 96 149, 182 149, 182 365 Dufresne  et  al.,

2013
MIROC-ESM OAC 64, 128 192, 256 192, 256 365 Watanabe  et  al.

(2011) 

6

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

https://doi.org/10.5194/cp-2019-55
Preprint. Discussion started: 5 June 2019
c© Author(s) 2019. CC BY 4.0 License.



Table 1:  Details of the models from the third phase of the Palaeoclimate Modelling
Intercomparison  Project  (PMIP3)  that  were  used  for  the  Last  Glacial  Maximum
(LGM) simulations used to create the prior. Coupled ocean-atmosphere models are
indicated  as  OA,  which  OAC models  have  a  fully  interactive  carbon  cycle.  The
resolution in the atmospheric, oceanic and sea ice components of the models is given
in terms of numbers of grid cells in latitude and longitude.

Figure 2: Uncertainties associated with the climate prior. The climate is derived from
a multi-model mean of the ensemble of models from the Palaeoclimate Modelling
Intercomparison  Project  (PMIP)  and  is  shown in  SI  Figure  1.  The  uncertainties
shown  here  are  the  standard  deviation  of  the  non-dimensionalised  multi-model
ensemble values. The individual plots show the uncertainties for the simulated (a)
moisture  index  (MI),  (b)  mean  annual  precipitation  (MAP),  (c)  mean  annual
temperature (MAT), (d) mean temperature of the coldest month (MTCO), (e) mean
temperature  of  the  warmest  month  (MTWA)  and  growing  degree  days  above  a
baseline of 5◦ C (GDD5).

2.3 Water-use efficiency calculations
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We applied the general approach developed by Prentice et al. (2017) to correct pollen-
based  statistical  reconstructions  to  account  for  [CO2]  effects.  The  approach  as
implemented here is based on equations (Appendix 1) that link moisture index (MI) to
transpiration and the ratio of leaf-internal to ambient CO2. The correction is based on
the principle that the rate of water loss per unit carbon gain is inversely related to
effective moisture availability  as sensed by plants.  The method involves solving a
non-linear  equation  that  relates  rate  of  water  loss  per  unit  carbon  gain  to  MI,
temperature and CO2 concentration. The equation is derived from theory that predicts
the response of the ratio of leaf-internal to ambient [CO2] to vapour pressure deficit
and temperature (Prentice et al., 2014; Wang et al., 2014).

2.4 Application of variational techniques

Variational data assimilation techniques provide a way of combining observations and
model outputs to produce climate reconstructions that are not exclusively constrained
to one source of information or the other (Nichols, 2010). We use the 3D-variational
method to find the best linear unbiased estimate (or analytical reconstruction) of the
palaeoclimate  given the site-based reconstructions  and the model-based prior.  Our
approach is fully described in Cleator et al. (2019a) but with an observation operator
based on the water-use efficiency calculations described in section 2.3. To avoid sharp
changes in time and/or space in the analytical reconstructions,  we assume that the
correlation matrix of the errors of the prior both spatially and temporally is Gaussian,
in order to create a climate anomaly field that is smooth both from month to month
and from grid cell to grid cell. The degree of correlation is controlled through two
length scales: a spatial length scale that determines how correlated the error in the
prior  is  between  different  geographical  areas,  and  a  temporal  length  scale  that
determines how correlated it is through the seasonal cycle. We used a temporal length
scale (Lt) of 1 month and a spatial length scale (Ls) of 400km. Sensitivity experiments
(Cleator et al., 2019a) have shown that a temporal length scale of 1 month provides an
adequately smooth solution for the seasonal cycle, both using single sites and over
multiple  grid  cells.  A  spatial  length  scale  of  400km  also  provides  a  reasonable
reflection of the large-scale coherence of regional climate change.

We  generated  composite  errors  on  the  analytical  reconstructions  (Figure  3)  by
combining the errors from the site-based reconstructions and from the prior. There are
regions  where  all  of  the  models  systematically  differ  from  the  site-based
reconstructions (Harrison et al., 2015) but nevertheless the inter-model variability is
low, which would lead to a very small contribution to the composite errors from the
prior. We therefore calculated the error of the prior from an equal combination of the
global error, the average error between each grid cell, and local error, the variance
between the different  models.  The reliability  of  the  analytical  reconstructions  was
assessed by comparing these composite errors with the errors on the prior. We masked
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out  cells  where  the  inclusion  of  site-based  reconstructions  does  not  produce  an
improvement of > 5% from the prior.

Figure 3: Uncertainties on the analytical reconstructions. These non-dimensionalised
uncertainties represent a combination of the errors on the site-based reconstructions,
and the grid-based errors in the prior and the global uncertainty from the prior.

3 Results

The analytical reconstructions (Figure 4) show an average year-round cooling of -6.9
°C in  the northern  extratropics.  The cooling  is  larger  in  winter  (–8.2  °C) than in
summer (–3.8  °C). A limited number of grid cells in central Eurasia show warmer-
than-present summers, and higher MAT. Temperature changes are more muted in the
tropics, with an average change in MAT of –3.5 °C. The cooling is somewhat lower
in summer than winter (–2.1  °C compared to –3.3  °C). Reconstructed temperature
changes were slightly smaller in the southern extratropics, with average changes in
MAT of –0.8°C, largely driven by cooling in winter. 

Changes in moisture-related variables (MAP, MI) across the northern hemisphere are
geographically more heterogeneous than temperature changes. Reconstructed MAP is
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greater than present in western North America (158 mm) but less than present (–342
mm) in eastern North America. Most of Europe is reconstructed as drier than present
(–241mm), the same for eastern Eurasia (-126 mm) and the Far East (–43 mm). The
patterns  in  MI  are  not  identical  to  those  in  MAP,  because  of  the  influence  of
temperature  on MI, but  regional  changes  are  generally  similar  to those shown by
MAP.  Most  of  the  tropics  are  shown  as  drier  than  present  while  the  southern
hemisphere extratropics are wetter than present, in terms of both MAP and MI. 

Figure 4: Analytically reconstructed climate, where areas for which the site-based
data provide no constraint on the prior have been masked out.  The individual plots
show reconstructed (a) moisture index (MI), (b) mean annual precipitation (MAP),
(c)  mean annual  temperature  (MAT),  (d)  mean temperature  of  the  coldest  month
(MTCO), (e) mean temperature of the warmest month (MTWA) and growing degree
days above a baseline of 5◦ C (GDD5).

The reconstructed  temperature patterns  are  not fundamentally  different  from those
shown by Bartlein et al. (2011) but the analytical dataset provides information for a
much larger area (1643% increase) thanks to the method’s imposition of consistency
among different climate variables, and smooth variations both in space and through
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the seasonal cycle. There are systematic differences however between the analytical
reconstructions  and  the  pollen-based  reconstructions  in  terms  of  moisture-related
variables,  and  this  largely  reflects  the  influence  of  [CO2]  that  is  included  in  the
analysis. Accounting for the physiological impact of [CO2] means that the analytical
reconstructions indicate wetter than present conditions in many regions (Figure 5a,
Figure 5b), for example in southern Africa where several of the original pollen-based
reconstructions show no change in MAP or MI compared to present, but the analytical
reconstruction shows wetter conditions than present. In some regions, incorporating
the impact of [CO2] reverses the sign of the reconstructed changes. Part of northern
Eurasia  is  reconstructed  as  being  wetter  than  present,  despite  pollen-based
reconstructions indicating conditions drier than present, as shown by SI Figure SI 3
(both in terms of MAP and MI). The relative changes in MAP and MI are similar
(Figure  5c),  implying  that  the  reconstructed  changes  are  driven  by  changes  in
precipitation rather than temperature. 

Figure  5:  Impact  of  CO2 on  reconstructions  of  moisture-related  variables.  The
individual plots show (a) the change in moisture index (MI) and (b) the change in
mean  annual  precipitation  (MAP)  before  (crosses)  and  after  (circles)  the
physiological impacts of [CO2] on water-use efficiency are taken into account. The
third plot (c)  shows the relative  difference  in MI and MAP as a result  of  [CO2],
shown as the percentage difference between the calculations made with and without
consideration of the [CO2] effect.

4 Discussion

Variational data assimilation techniques provide a way of combining observations and
model outputs, taking account the uncertainties in both, to produce a best-estimate
analytical  reconstruction  of  LGM  climate.  These  reconstructions  extend  the
information available from site-based reconstructions both spatially and through the
seasonal cycle. Our new analytical data set characterizes the seasonal cycle across a
much larger  region of the globe than the data set  that  is  currently being used for
benchmarking of palaeoclimate model simulations. We therefore suggest that this data
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set  (Cleator  et  al.  2019b) should be used for  evaluating  the CMIP6-PMIP4 LGM
simulations.

Some areas are still  poorly covered by quantitative pollen-based reconstructions of
LGM  climate,  most  notably  South  America.  More  pollen-based  climate
reconstructions  would provide one solution to  this  problem – and there are  many
pollen records that could be used for this purpose (Flantua et al., 2015; Herbert and
Harrison, 2016; Harrison et al., 2016). It would also be possible to incorporate other
sources  of  quantitative  information  within  the  variational  data  assimilation
framework.

One of the benefits  of the analytical  framework applied here is  that  it  allows the
influence  of  changes  in  [CO2]  on  the  moisture  reconstructions  to  be  taken  into
account.  Low [CO2] must have reduced plant water-use efficiency, because at low
[CO2] plants need to keep stomata open for longer in order to capture sufficient CO2.
Statistical  reconstruction methods,  whether based on modern analogues or modern
climate  transfer  functions,  cannot  account  for  such effects.  Climate  reconstruction
methods based on the inversion of process-based ecosystem models can do so (see
e.g. Guiot et al., 2000; Wu et al., 2007; Wu et al., 2009; Izumi and Bartlein, 2016) but
are critically dependent on the reliability of the vegetation model used. Most of the
palaeoclimate  reconstructions  have  been  made  by  inverting  some  version  of  the
BIOME model (Kaplan et al., 2003), which makes use of bioclimatic thresholds to
separate different plant functional types (PFTs). As a result, reconstructions made by
inversion  show “jumps”  linked  to  shifts  between  vegetation  types  dominated  my
different PFTs whereas, as has been shown recently (Wang et al., 2017), differences
in water use efficiency of different PFTs can be almost entirely accounted for by a
single equation, as proposed here. The response of plants to changes in [CO2] is non-
linear (Harrison and Bartlein, 2012), and the effect of the change between recent and
pre-industrial or mid-Holocene conditions is less than that between pre-industrial and
glacial conditions. Nevertheless, it would be worth taking this effect into account in
making reconstructions of interglacial time periods as well. 

The  influence  of  individual  pollen-based  reconstructions  on  the  analytical
reconstruction  of  seasonal  variability,  or  the  geographic  area  influenced  by  an
individual site, is crucially dependent on the choice of length scales. We have adopted
conservative length scales of 1 month and 400 km, based on sensitivity experiments
made  for  southern  Europe  (Cleator  et  al.,  2019a). These  length  scales  produce
numerically stable results for the LGM, and the paucity of data for many regions at
the LGM means that using fixed, conservative length scales is likely to be the only
practical  approach.  However,  in  so  far  as  the  spatial  length  scale  is  related  to
atmospheric circulation patterns, there is no reason to suppose that the optimal spatial
length scale will be the same from region to region. The density and clustering of
pollen-based reconstructions could also have a substantial effect on the optimal spatial
length scale. A fixed 1-month temporal length scale is appropriate for climates that
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have a reasonably smooth and well defined seasonal cycle, either in temperature or
precipitation. However, in climates where the seasonal cycle is less well defined, for
example in the wet tropics, or in situations where there is considerable variability on
sub-monthly time scales, other choices might be more appropriate. For time periods
such as the mid-Holocene, which have an order of magnitude more site-based data, it
could be useful to explore the possibilities of variable length scales.   

We have used a 5% reduction in the analytical uncertainty to identify regions where
the incorporation of site-based data has a negligible effect on the prior as a way of
masking out regions for which the observations have effectively no impact  on the
analytical reconstructions. The choice of a 5% cut-off is arbitrary, but little would be
gained by imposing a more stringent cut-off at the LGM given that many regions are
represented by few observations. A more stringent cut-off could be applied for other
time intervals with more data. 

There  have  been  a  few  previous  attempts  to  use  data  assimilation  techniques  to
generate spatially continuous palaeoclimate reconstructions. Annan and Hargreaves
(2013)  used  a  similar  multi-model  ensemble  as  the  prior  and  the  pollen-based
reconstructions from Bartlein et al. (2011) to reconstruct MAT at the LGM. However,
they made no attempt to reconstruct other seasonal variables, either independently, or
through exploiting features  of the simulations  (as we have done here)  to generate
seasonal reconstructions. Kalman particle filter approaches (e.g. Goosse et al., 2006)
produce  seasonal  and  geographical  estimates  of  palaeoclimate,  but  particle  filters
cannot produce estimates of climate outside the realm of the model simulations. Our
3-D  variational  data  assimilation  approach  has  the  great  merit  of  being  able  to
produce seasonally coherent reconstructions generalized over space, while at the same
time being capable of producing reconstructions that are outside those captured by the
climate model, because they are not constrained by a specific source (Nichols, 2010).
This property is of particular importance if the resulting data set is to be used for
climate model evaluation, as we propose.
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Figures and Tables Captions

Figure 1: The distribution of the site-based reconstructions of climatic variables at the
Last Glacial Maximum. The individual plots show sites providing reconstructions of
(a)  moisture  index  (MI),  (b)  mean  annual  precipitation  (MAP),  (c)  mean  annual
temperature (MAT), (d) mean temperature of the coldest month (MTCO), (e) mean
temperature  of  the  warmest  month  (MTWA)  and  growing  degree  days  above  a
baseline of 5◦ C (GDD5). The original reconstructions are from Bartlein et al. (2011)
and Prentice et al. (2017).

Figure 2: Uncertainties associated with the climate prior. The climate is derived from
a multi-model mean of the ensemble of models from the Palaeoclimate Modelling
Intercomparison Project (PMIP) and is shown in SI Figure 1. The uncertainties shown
here are the standard deviation of the multi-model ensemble values. The individual
plots  show the  uncertainties  for  the  simulated  (a)  moisture  index  (MI),  (b)  mean
annual  precipitation  (MAP),  (c)  mean  annual  temperature  (MAT),  (d)  mean
temperature  of  the  coldest  month  (MTCO),  (e)  mean temperature  of  the  warmest
month (MTWA) and growing degree days above a baseline of 5◦ C (GDD5).  

Figure 3: Uncertainties on the analytical reconstructions. These uncertainties represent
a  combination  of  the  errors  on  the  site-based  reconstructions,  and  the  grid-based
errors on the prior and the global uncertainty from the prior. 

Figure 4: Analytically  reconstructed climate,  where areas for which the site-based
data provide no constraint on the prior have been masked out.  The individual plots
show reconstructed (a) moisture index (MI), (b) mean annual precipitation (MAP), (c)
mean  annual  temperature  (MAT),  (d)  mean  temperature  of  the  coldest  month
(MTCO), (e) mean temperature of the warmest month (MTWA) and growing degree
days above a baseline of 5◦ C (GDD5).

Figure  5:  Impact  of  CO2 on  reconstructions  of  moisture-related  variables.  The
individual plots show (a) the change in moisture index (MI) and (b) the change in
mean annual precipitation (MAP) when the physiological impacts of [CO2] on water-
use efficiency are taken into account. The third plot (c) shows the relative difference
in MI and MAP as a result of [CO2], shown as the percentage difference between the
no-[CO2]  and [CO2] calculations.

Table 1: Details  of the models from the Palaeoclimate Modelling Intercomparison
Project (PMIP) that were used for the Last Glacial Maximum (LGM) simulations used
to create the prior. 

21

714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753

https://doi.org/10.5194/cp-2019-55
Preprint. Discussion started: 5 June 2019
c© Author(s) 2019. CC BY 4.0 License.



Appendix

We  define  e as  the  water  lost  by  transpiration  (E)  per  unit  carbon  gained  by
photosynthesis (A). This term, the inverse of the water use efficiency, is given by:

e  =  E/A  =  1.6 D / ((1 – χ) ca) (A1)

where D is the leaf-to-air vapour pressure deficit (Pa),  ca is the ambient CO2 partial
pressure (Pa)  and  χ is  the ratio  of leaf-internal  CO2  partial  pressure (ci)  to  ca.  An
optimality-based model  (Prentice  et  al. 2014),  which  accurately  reproduces  global
patterns  of  χ and  its  environmental  dependencies  inferred  from  leaf  δ13C
measurements (Wang et al. 2017), predicts that:

χ  =  (Γ*/ca) + (1 – Γ*/ca) ξ/(ξ + √D) (A2a)

and

ξ  =  √(β(K + Γ*)/1.6 η*) (A2b)

where Γ* is the photorespiratory compensation point of C3 photosynthesis (Pa), β is a
constant (estimated as 240 by Wang et al. 2017), K is the effective Michaelis-Menten
coefficient of Rubisco (Pa),  and  η* is the ratio of the viscosity of water (Pa s) at
ambient temperature to its value at 25˚C. Here  K depends on the Michaelis-Menten
coefficients  of  Rubisco  for  carboxylation  (KC)  and  oxygenation  (KO),  and  on  the
partial pressure of oxygen O (Farquhar et al. 1980):

K  =  KC (1 + O/ΚO) (A3)

Standard values and temperature dependencies of ΚC, KO, Γ* and η* are assigned as in
Wang et al. (2017).

The moisture index MI is expressed as

MI = P/Eq, Eq  = ∑n(Rn/λ) s/(s + γ) (Α4)

where P is annual precipitation, Rn is net radiation for month n, λ is the latent heat of
vaporization of water,  s is the derivative of the saturated vapour pressure of water
with respect to temperature (obtained from a standard empirical formula also used by
Wang et al. 2017), and γ is the psychrometer constant. We assume that values of MI
reconstructed from fossil pollen assemblages, using contemporary pollen and climate
data either in a statistical calibration method or in a modern-analogue search, need to
be corrected in such a way as to preserve the contemporary relationship between MI
and  e, while taking into account  the change in  e that is caused by varying  ca and
temperature  away  from  contemporary  values.  The  sequence  of  calculations  is  as
follows. (1) Estimate e and its derivative with respect to temperature (∂e/∂T) for the
contemporary ca and climate, using equations (A1) – (A3) above. (2) Use the e and ∂e/
∂T to calculate ∂D/∂T given the palaeo ca (measured in ice-core data) and temperature
(reconstructed from pollen data), via a series of analytical equations that relate ∂e/∂T
to  ∂D/∂T and hence to  s.  (3) Use the new ∂D/∂T and relative humidity (from the
PMIP3 average) to  derive  a  new value  of  s. (4)  Re-calculate  MI  using  a  palaeo
estimate of Rn (modelled as in Davis et al., 2017) and the new value of s.
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